GROW

Growth by Optimization of Work
The User Manual
Version 2015
Oct. 2015

Table of Contents

1. Introduction
2. General Algorithm

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.

3. Input

3.1.
3.2.

4. Output

4.1.
4.2.

5. System Requirements

5.1.

5.2

Fric2D

One Fault

Two or More Faults
Intersections
Termination

Long GROW Runs
Growing from a point

GROW Input

Fric2D Input
3.2.1. Intact Rock
Properties
3.2.2. Boundaries
3.2.3. Fault Properties
3.2.4. Crack Properties
3.2.5. Flaw Properties

Files Generated
Standard Output

Files Required

. Compilers Required

GINDNDNDNDN

11
12
17
17
17
17

19
24
27
28
28
28
32
32
32
32

1. Introduction

Growth by Optimization of Work (GROW) predicts how fractures and faults grow, interact
and eventually link through a work optimization approach. This user manual describes 1)
the underlying algorithm employed by GROW, 2) the input required by GROW, 3) the
output produced and 4) the files and compilers required to run GROW.

We maintain a forum where users of GROW can post questions at:
https://www.geo.umass.edu/faculty/cooke/software.html. Please contact us with
comments or questions at this address!

When publishing results of GROW models, please reference the following paper,
which describes the GROW algorithm and an application to a crustal-scale releasing
stepover:

McBeck, J. A, Madden, E., Cooke, M. L., 2016. Growth by Optimization of Work (GROW): A
new modeling tool that predicts fault growth through work minimization. Computers and
Geosciences.

2. General Algorithm

Tectonic environments evolve to optimize work and fractures grow in the direction that
optimizes work (Cooke and Madden, 2014). To model fracture growth through work
optimization we use a Boundary Element Method (BEM) tool in which all the fractures,
faults and boundaries in a system are discretized into linear displacement discontinuity
elements. We call this tool GRowth by Optimization of Work (GROW). To simulate fracture
growth with GROW, elements are added radially to the tip of propagating fractures in the
direction that optimizes external work divided by newly added fracture area in that
increment of growth Wey/AA. More specifically, in each iteration of crack growth one
element is added to each fault tip that is propagating. If one fault is propagating, the
element that optimizes work is added to the tip of the propagating fault in one propagation
of crack growth. If two faults are growing, two elements will be added to the corresponding
faults after one propagation of crack growth. If two tips of one fault are growing then an
element will be added to both tips of that fault. Each added element optimizes the external
work of the system divided by the fracture area propagated in that propagation of growth,
Wext/AA. See the fabulous review Cooke and Madden (2014) for a full explanation of the
theoretical basis of work optimization and its application to fault growth.

2.1 Fric2D

Because GROW repeatedly executes Fric2D to calculate Wey, here we briefly describe the
functionality of the two-dimensional BEM modeling tool Fric2D (Cooke and Pollard, 1997).
In Fric2D dislocation surfaces, such as faults and the boundaries of the model, are
discretized into elements that are free to open or slip, but not interpenetrate, in response
to tractions or displacements applied to the boundaries (Cooke and Pollard, 1997). Fric2D
solves the quasi-static equations of deformation on each element given a set of boundary
conditions to determine the displacement and tractions on each boundary and fault

produced by a given stress state (Cooke and Pollard, 1997). Fric2D input files enable the
user to describe the boundary conditions and initial fault geometry, and specify how each
fault is growing. The user can allow the propagation of the tip of one fault, both tips of a
fault and multiple tips of multiple faults. GROW automatically executes Fric2D and reads
Fric2D output files to calculate the external work of the system, Wey, in order to simulate
the growth of the most mechanically efficient fault network.

2.2. One Fault

If the user specifies that the tip of one fault is propagating, GROW searches for the
orientation of the potential element added to the tip of that fault that optimizes external
work divided by the new fracture area added in that propagation of growth (Wex/AA).
GROW uses Wex:/AA, rather than Wex: because systems with more fracture area will
generally always be more efficient that systems with less fracture area. Because Fric2D
assumes a unit thickness of 1 meter, fracture area added in a propagation of growth is
simply calculated by the difference in total fracture area before and after an increment of
growth.

When the user calls GROW they must provide an input file that describes an initial
fault geometry and loading conditions, input.in, and the value in degrees of the resolution
angle, Ores, the minimum angle, Omin, and the maximum angle, Omax, which describe the
parameter space in which GROW searches for the most efficient fault geometry. The input
file must end in .in, and must exist in the current directory with the GROW executable. For
more details about this input file see the “Input” section below.

Omin and Omax specify the range of orientations that GROW searches for the element
that optimizes work, and 6res determines the resolution of this search. For example,
immediately after the user calls GROW, GROW reads the initial input file, determines what
faults are growing and, if one tip of one fault is growing, creates a Fric2D input file that
includes the original fault geometry and an element oriented Omin in the clockwise direction
from the growing fault tip. GROW then calls the BEM code Fric2D to calculate the tractions
and displacements along each element in this new geometry. This execution of Fric2D
produces a Fric2D output file from which GROW then determines Wey/AA of the system
with the perl script Wext.pl. Next GROW creates a Fric2D input file from the initial input file
specified by the user with an element added Omin + Ores clockwise from the tip of the fault,
and similarly calculates Wex:/AA. Each subsequent orientation tested is 6res more than the
previous orientation tested. The last orientation of the new element that GROW tests in this
increment of crack growth is strictly less than Omax. After GROW calculates Wext/AA for each
orientation, GROW identifies the orientation of the newly added element that optimizes
external work, Oopt. After this first broad search GROW creates a new Fric2D input file from
the initial input file with an element added Oopt -Ores/2 clockwise from the tip of the fault,
and finds the Wex:/AA of this system. GROW also calculates Wex:/AA for the element added
Bopt +0res/2 clockwise from the tip of the fault. We refer to this higher-resolution search as
the “tuning” propagation step. We refer to the first initial, lower-resolution search of the
efficient orientations as the “first pass” in a propagation step. Figure 1 demonstrates the
fault geometries tested in the first propagation of crack growth when one tip of one fault is
growing.

After Wey. is calculated for each of the aforementioned geometries GROW then
identifies the geometry that optimizes Wex/AA. If the user specifies displacements as
boundary conditions then the most efficient geometry will have the smallest value of
Wext/AA, and thus minimizes work. If the user specifies tractions as boundary conditions
then the most efficient geometry will have the highest Wex:/AA, and thus maximizes work.
Although a system with tractions as boundary conditions will evolve so that Wex/AA
increases, we sometimes refer to this general method as “work minimization.” The user
may use either tractions or displacements as boundary conditions when running GROW,
but should not use both methods of loading when imposing non-zero boundary conditions.
For example, the user may set a displacement boundary condition where 0 meters of slip is
prescribed to one boundary, and a traction boundary condition where 1 MPa of normal
stress is prescribed to a different boundary. But the user should not set one boundary to 1
meters of normal displacement and a different boundary to 1 MPa of normal stress.
Additionally, displacement boundary conditions often produce more numerically robust
results than tractions, and thus is the recommended method of loading.

After GROW identifies the geometry that optimizes work, the Fric2D input file that
specifies this geometry is saved as the efficient input file, which is named with .eff (in our
example, input.eff). GROW then treats input.eff as the new initial input file to which to add
potential growth elements, calculate AWex:/AA and find the most efficient geometry in all
subsequent propagations of crack growth.

Figure 1: Schematic representation of all fracture geometries tested in first propagation of crack growth
when user specifies the minimum angle as Omin, resolution angle as 6, and maximum angle as Omin+C6; (where
C=4.5 in this example). A) shows the initial fault geometry, B-F) shows the fault geometries for which
AW/AA is calculated in the first, lower-resolution search of a propagation of crack growth. G-H) show the
fault geometries tested in the tuning sequence of this propagation. In this example the orientation of the
newly added element that optimizes AW.y/AA in the first broad search of this propagation is Omin + 6r. In B-F)
the dashed lines show the location of an element oriented at O from the fault tip, and in G-H) the dashed
line shows the location of the most efficiently oriented potential element identified in the first lower
resolution search of this propagation of crack growth.

Onmin

f\
A) initial geometry E) test fracture

Ormin J Omnj} 40,
B) test fracture F) test fracture

S Ou-0d2 /7
Omm/>/ opt = =ne .

G) refine fracture orientation

C) test fracture higher-resolution search
O 2" Oup+ 02~
H) refine fracture orientation
D) test fracture higher-resolution search

2.3. Two or More Faults

If the user specifies that two faults are growing, GROW searches for the orientation of the
element that optimizes work for one of the two faults by invoking the first pass of the
algorithm used to find the most efficient geometry when one fault is growing. After this
orientation is found, the element at the specified orientation is added to the initial input
file. Then GROW searches for the most efficient element added to the tip of the other fault
with an input file that includes the element added to the other fault. GROW sorts the faults
by name alphanumerically to determine what fault propagates first, i.e., what fault will
have elements added to it first. For example, a fault named coachella will propagate before
a fault named san_andreas.

The tuning propagation step functions slightly differently when more than one fault
is propagating. If the most efficient element added to the fault coachella is oriented 6., and
the most efficient element added to san_andreas is oriented 0, four additional geometries
are tested that search the parameter space near the most efficient orientations found in the
first broad search. Four possible tuning geometries are listed in Table 1a, which shows the
orientation of the element added to each fault in each of the geometries. Table 1b shows an
alternative set of tuning geometries, which would be tested for efficiency if one of the
tuning geometries is found to be more efficient than the most efficient geometry identified
in the first broad search. After Wey/AA is calculated for the four geometries listed in Table
1a or Table 1b, the geometry that optimizes AWex:/AA is identified from the tuning
geometries and the most efficient geometry found in the first broad search. At the end of
this tuning propagation GROW creates the most efficient input file found thus far by adding
two elements to the corresponding fault tips in the initial input file. Like the algorithm with
only one fault, GROW then uses this efficient input file as the next initial input file to which
to add elements. Figure 2 illustrates an example propagation sequence when two faults are
growing.

If the user specifies that both tips of a fault are growing, GROW handles the
propagation of both tips of a fault just as if each tip of two faults were growing. If more than
two faults are propagating GROW finds the most efficient geometry with the same first
broad search algorithm, where GROW searches for the efficient orientation of each newly
added element sequentially. In the tuning propagation step, several more geometries are
tested. Table 2 lists six geometries that would be tested if in the first pass of the algorithm
GROW determined that the most efficient orientation of the elements added to three
hypothetical faults banning, coachella, and mill, are 6y, 6., and O, respectively.

Table 1a: Geometries tested in the tuning sequence of a propagation of crack growth after the first pass of the
search algorithm found that the most efficient orientation of an element added to the tip of the coachella fault
is O, and the most efficient orientation of an element added to san_andreas is 8s. In this example the
resolution angle set by the user is 6;. When Wy/AA was calculated for these geometries, a geometry more
efficient than an element added to coachella at 6. and san_andreas at 6. was not identified.

geometry | coachella | san_andreas
1 0c 0s-0:/2

2 0c 0s+0:/2

3 0c-0:/2 | O

4 O+ Gr/Z 0s

Table 1b: An example of how GROW will test slightly different tuning geometries if one of the tuning
geometries is found to be more efficient than the most efficient geometry identified in the first broad search.
Here, the efficient orientations identified in the first search of coachella and san_andreas was, respectively, 0.
and 6 but tuning geometry 2 was determined to produce a greater change in normalized work than the
previous most efficient geometry.

geometry | coachella | san_andreas
1 Oc 0s-0:/2

2 Oc 0s+0./2

3 Oc-0:/2 0s +0r/2

4 0c+0r/2 | Bs+0:/2

Table 2: Geometries tested in tuning sequence of propagation of crack growth after the first pass of the
search algorithm found that the most efficient orientation of the elements added to the faults banning,
coachella and mill are 0y, 0 and By, respectively. The resolution angle is 6. The below sequence of tuning
geometries assumes that the most efficient geometry identified in the first broad search is more efficient than
tuning geometries tested.

geometry | banning | coachella | Mill

1 Ob 0c Om-0:/2
2 Ob 0c Om +0:/2
3 O 0c-0:/2 | Om

4 Ob 0c+6r/2 | Om

5 Ob-0:r/2 | Oc Om

6 Ob+6:/2 | Oc Om

Figure 2: This sequence of sketches shows an example propagation sequence when two faults are
growing. This figure also demonstrates the naming convention of files used in the GROW algorithm,
which will be explored in more detail in the section “Files Generated”. In this example the initial
input file provided by the user, shown in 1), and named input.in contains a fault fault1 comprised of
2 elements, and fault fault? comprised of 3 elements. Fault1 is growing from end 2 and fault2 is
growing from end 1.

2) shows that fault1propagates before fault2 in a propagation of crack growth because
GROW propagates faults alphanumerically. 2) shows all of the elements tested for fault1 in
propagation 1. For each fault geometry tested, however, only one of the newly added elements (i.e.
6,7,8,9,10) exist in the file. The table in 2) lists the filename of the Fric2D input file that describes
the fault geometry that includes each respective element and does not include the remaining
elements from 6-10. In 2) element 7 is bolded because GROW determined that the fault geometry
that includes element 7 optimizes Wey/AA. Thicker elements indicate elements that were part of
the initial fault geometry, or were identified as elements that optimize work. Thinner elements
show other element orientations that were tested for efficiency.

3) shows that after the fault geometry that includes element 7 is identified as the most
efficient geometry, GROW searches for the most efficient geometry of elements added to the tip of
fault2, and finds that element 14 optimizes Wey/AA.

4) shows the most efficient geometry found in the first pass of the search algorithm, and the
table lists the orientation of the newly added elements. 5-8) show the fault geometries tested in the
tuning sequence. Thicker elements indicate elements that exist in the respective tuning fault
geometry. Tables in 2-8) lists the orientation of the corresponding element measured clockwise
from the tip of the fault.

9) shows that the most efficient geometry identified after the tuning sequence includes
element 14 and element 17. If GROW did not execute the tuning sequence the more efficient
orientation of element 17 would not have been identified.

2) Propagation 1 of crack growth, growing fault1 end 2

Element# | Filename
6 input_1_fault1_2_90.in
. 7 input_1_fault1_2_135.in
1) Initial fault geometry end 1 8 input_1_fault1_2_180.in
Filename: input.in put_1_ ==
9 input_1_fault1_2_225.in
10 input_1_fault1_2_270.in

end1

fault1
‘1\‘\32(:1 2
2

end 1

fault2
end1 3
fault2 4 end2
3 4 end 2 5
5

Figure 2 continued

3) Propagation 1 of crack growth, growing fault2 end 1

Element# | Filename
1" input_1_fault2_1_90.in
12 input_1_fault2_1_135.in
e fault1 13 input_1_fault2_1_180.in
1 14 input_1_fault2_1_225.in
2 15 input_1_fault2_1_270.in

fault2

5) Propagation 1 of Crack Growth: Tuning Sequence Geometry
Filename: input_tune_1_fault2_1_202.5.in

Element# | Orientation

7 135
end? faultt 18 2025
1
2
17
16 7

14 19

18
fault2

7) Propagation 1 of Crack Growth: Tuning Sequence Geometry
Filename: input_tune_1_fault1_2_202.5.in

Element# | Orientation
16 202.5
end 1 fault1 14 225
1
2
17
16 7
14 19
18
fault2
s 4 end 2
5

4) Propagation 1 of Crack Growth, before Tuning Sequence
Filename: input_1_fault2_1_225.in

Element# | Orientation
7 135
d
S faultt 4 225

fault2

6) Propagation 1 of Crack Growth: Tuning Sequence Geometry
Filename: input_tune_1_fault2_1_247.5.in

Element# | Orientation
7 135
end? faultt 19 2475
1
2
17
16 7
14 19
18
fault2
3 4 end 2
5

8) Propagation 1 of Crack Growth: Tuning Sequence Geometry
Filename: input_tune_1_fault1_2_247.5.in

Element# | Orientation
17 2475
end 1 fault1 14 225
1
2
17
16 7
14 19
18
fault2
s 4 end 2
5

Figure 2 continued

9) After Tuning Sequence of Propagation 1 of Crack Growth
Input filename: input_tune_1_fault1_2_247.5.in

Element# | Orientation
17 2475
end? fuitt 14 225

T

17

14

fault2
4 end 2
5

2.4. Intersections

When GROW adds an element to the tip of a fault, this potential element could intersect
another element of a fracture or boundary, or fall within the zone neighboring each
element where stresses are non-physically high. We consider when a new element lies
within this zone or strictly intersects another element as “intersecting” because both
geometries will produce non-physical values of Wey. We define this zone as within one
element half-length of an element.

GROW handles the intersection of elements differently depending on whether an
element of a fault intersects an element of the same fault, or whether the element intersects
the element of a different fault or boundary of the model. If GROW creates an input file
where the potential element intersects the fault from which it is growing, GROW does not
try to correct this intersection, and does not attempt to run Fric2D and calculate Wex: for
this input file. Instead, GROW will report an error message “Fault intersects itself” to
standard output (i.e., the command window or terminal) and continue to test other
orientations of the newly added element.

If the element of a fault intersects the element of a different fault or the element of a
boundary, then the nodes of the fault or boundary and the propagating fault are slightly
adjusted so that the intersection meets at exactly one node. The nodes of the boundary or
non-propagating fault are changed so that the maximum possible number of elements
maintains the same length as the original element length of the boundary or fault. We strive
to keep the element length as consistent as possible because the calculation of Wex: is
sensitive to element length. After the nodes are adjusted GROW runs Fric2D, calculates
Wext, and considers this intersecting geometry when searching for the most efficient
geometry. When the most efficient geometry includes a fault that intersects another fault or
a boundary, GROW sets a flag in the Fric2D input file that specifies that the intersecting tip
is no longer growing. Figure 3 demonstrates how GROW detects and corrects intersections.

Figure 3: Detection of fracture intersection and subsequent modification of element nodes.

A) In intersection scenario one, a potential growth element intersects a preexisting
fracture. To maintain kinematic compatibility among elements, GROW replaces
propagation element tip with smaller element I, and divides an element of lower fracture
into two smaller elements (labeled II and III) (B). C) In intersection scenario two, GROW

detects fracture intersection because tip of newly added element (thin line) falls within one
element half-length of lower fracture. As a result, GROW adds a smaller element (labeled I)

to tip of upper, propagating fracture, and divides element of lower fracture into two

elements labeled II and III (D).

A) Intersection scenario 1

. -

C) Intersection scenario 2

10

2.5. Termination

A GROW run will stop when the tips of all the faults are not propagating. The tip of a fault
will stop propagating if the element added to the tip of this fault that optimized work in the
last propagation of crack growth intersects another fault or boundary. Additionally, GROW
signals that a fault stops propagating (by setting a flag in the corresponding input file) if the
most efficient element added in the last propagation of crack growth does not fail in shear
or in tension. An element fails in tension when the normal stress across its surface, o,
which is positive when tensile, exceeds or equals its tensile strength, T:

o, =>T.
Note that T is the tensile strength of the intact material at the fault tip, and not the tensile
strength of the fault.

A potential growth element fails in shear following the Coulomb failure criterion,
when the magnitude of the shear stress across its surface, 7, exceeds or equals the sum of
the inherent shear strength, So, and the product of the internal coefficient of friction, up, and
normal stress, o, across the potential element:

|T| = S, + UoOn-

By determining if potential elements fail in tension and/or shear, GROW honors the
principles of linear elastic fracture mechanics. And while each potential growth element
must meet one of these criteria to be considered a possible growth direction, the
propagation direction is determined by the fault geometry that minimizes work.

At the end of a Fric2D output file Fric2D lists the elements that fail in shear or by
opening-mode failure for each fault. GROW reads the Fric2D output file to determine if an
element added to the propagating fault fails, and if the element does not fail then GROW
does not consider this geometry when it searches for the geometry that optimizes work. If
none of the elements added to the tip of a fault fail in shear or opening mode, GROW sets a
flag in the Fric2D input file that signals that this fault tip is no longer propagating. So if one
tip stops propagating, GROW will continue to search for the geometry that optimizes work
by adding elements to the tips of any other faults in the system. This functionality is
implemented by parsing the most efficient input file after each propagation of crack growth
to determine if and what faults are still propagating.

2.6. Long GROW Runs

Under certain loading conditions the tips of faults will continue to propagate for many
increments of crack growth. To free memory during such long runs, and effectively reduce
execution time, GROW automatically restarts itself after five propagations of crack growth.
When GROW restarts the Fric2D input file that specifies the initial geometry is now set as
the most efficient geometry identified in the last propagation of crack growth. Additionally,
when GROW restarts, GROW passes the external work required by the last efficient

11

geometry so that GROW will not recalculate the initial Wex: of a geometry for which GROW
has previously calculated work.

2.7. Growing from a point: Investigating fracture initiation

The previous sections describe the general usage of GROW, in which the user specifies one
or more faults in the initial input file that are propagating. The user can also specify a point
from which a fault will propagate. In this case, the initial Fric2D input file lists the
coordinates of the point and whether or not the fault that grows from this point is
propagating from both tips of the fault, or just one tip (see “Input” section for more detail).

When the user invokes this functionality, GROW first searches for the orientation of
the element that optimizes work at the point specified by the user. More specifically, if the
user sets the resolution angle to Ores, the coordinates of the point to x, y, and the length of an
element of the fault that grows from the point to h meters, in the first propagation of crack
growth GROW will find the external work of the input file with an element with the end
points x, y and x-h, y. GROW finds the external work for the orientation of an element added
from zero to 359° from this line segment in increments of Bres (0, Ores, 20res, 3Ores, ...). Like
the general GROW algorithm, after GROW finds the most efficient orientation of the
element extending radially from the coordinates x,y (6.), GROW enters a tuning sequence
where Wey is calculated for the fault geometry with an element oriented at 6e - 6:/2 and 6. +
0:/2. Figure 4 shows the orientations of all elements tested in the first propagation of crack
growth when the user decides to propagate a fault from a point.

In this usage of GROW, when the user specifies that both tips of the fault are
growing GROW subsequently adds elements to both tips of the element that optimized
work in the first propagation of crack growth. When the user sets only one tip of the fault
growing GROW adds elements to the tip of the first element added that does not have the
coordinates originally set by the user. For example, tip 1 of all of the elements tested in the
first propagation of crack growth will have the coordinates x, y, and tip 2 of the most
efficient element will have coordinates along the circle with a center of x, y and a radius of
one element length. When one tip of a fault propagates from a point, GROW subsequently
adds elements to tip 2 of the previous element. Figure 5 shows how elements are
subsequently added to one tip of a fault when the user chooses to propagate a fault from a
point, and the propagation sequence when the user specifies that both tips of the fault
propagate.

When GROW adds the first element it inserts a header line and line describing other
fault properties to the Fric2D input file so that later propagations of crack growth consider
this new fault like any other growing fault. After the first element is added the algorithm
proceeds as the general algorithm described in previous sections.

12

Figure 4: Illustration shows the orientations of all elements tested in the first propagation of crack growth
when the user grows from a point. In this example the user specified that the flaw begin propagating at the
coordinates x, y; that the length of an element in this flaw is h; and that the resolution angle is 8. The angle
between elements 1-8 radiating from x, y is 8. End 1 of the crack added in the first propagation of crack
growth is always at the coordinates specified by the user x, y, and end 2 of the crack is along the circle with a
center of x, y and a radius of h. The bolded element 8 indicates that this fault geometry optimized Wex in the
first propagation of crack growth. Element 9 and 10 were tested in the tuning sequence of the first
propagation of crack growth. The numbering of elements indicates the order in which the elements were
added and Wey calculated.

end 2

end 2

end 2

end 2

end 2

13

Figure 5: Sketch shows how elements are subsequently added to one tip of a fault when the user decides to
grow from a point (A), and the propagation sequence when the user specifies that both tips of the fault
propagate (B). With this implementation the user initially specifies the coordinates of the flaw (x, y) and the
length of the elements that will comprise this fault. A) shows that when the user indicates that only one tip of
the fault is propagating a new element will always be added to end 2 of subsequent elements.

B) shows that when the user indicates that both tips of the fault is growing, elements are added to
end 1 and end 2 of the crack in each propagation of crack growth. B) 5-8) describe all the fault geometries
tested in the tuning sequence of the second propagation of crack growth in this example. Here, the most
efficient orientation identified in the first pass of the search algorithm of element 2 and 3 are 0. and 63,
respectively, and the resolution angle is 6.. In 5-8) only bolded elements represent the fault geometry
currently being tested, and the table lists the orientation of the elements added in the tuning sequence.

A) X,y
end 1.

1) Initial fault geometry
X,y
'end 2 1 end 1'

2) Propagation 1

end 2

X,y
‘end 2 1 end 1.

end 1
3) Propagation 2

X,y

'end 2 1 end 1'
end 1

4) Propagation 3

14

B)

X,y
end1
1) Initial fault geometry
X,y
end 2 1 end 1
2) Propagation 1
end 2
2 X, y
‘end 2 1 end 1
end 1
end 2 3) Propagation 2, end 2
2 X,y
end 2 1 end 1
end 1 end 2
3
end 1
4) Propagation 2, end 1
5) Propagation 2
Tuning Sequence
03¢ Element | Orientation
2 SPR
1 3 B0 + 6,12
3
6
2 2 B2e 6) Propagation 2
s Tuning Sequence
1 Element | Orientation
e2e
2 6
3 030 - 6,/2

15

Figure 5B) continued

7) Propagation 2
Tuning Sequence

Element

Orientation

2

O - 0,/2

3

e3e

8) Propagation 2
Tuning Sequence

Element

Orientation

2

O + 0,/2

3

e3e

16

3. Input

Because GROW repeatedly runs Fric2D, the user must understand how to format Fric2D
input files to precisely model the specific tectonic environment in which they are
interested. The user must also know the order of input parameters required to run GROW.
First we discuss the order of input parameters required to run GROW, and then we
describe how to format a Fric2D input file.

3.1. GROW Input

The general GROW usage requires that the user specify an initial fault geometry and
loading conditions, which is described in a Fric2D input file. This input file must be named
with the postfix.in, for example input.in. This input file must exist in the same directory as
the GROW executable. The user also sets the resolution angle, Bres, the minimum angle, Omin,
and the maximum angle, Omax that defines the range of orientations to search. On the
command line, GROW is called with the command: perl GROW.pl input.in Bres OminOmax. Each
parameter in the command line is separated by a space.

3.2. Fric2D Input

The specifics of how to format Fric2D input files are fully described at
http://www.geo.umass.edu/faculty/cooke/Fric2D/chapter4.html. Here we describe the
most important features of a Fric2D input file required to model fault evolution with
GROW.

3.2.1. Intact Rock Properties

In the Fric2D input file the user can set the properties of the intact rock in the model,
including Possion’s ratio, listed as pr in the input file, Young’s modulus, e (MPa), mode-I
fracture toughness, k1c (MPa m1/2), tensile strength, tensileStrength (MPa) and density,
density (kg/m3). The variables that specify the magnitude of these rock properties are
listed under Rock Properties or Gravitational Stresses in the input file. Figure 6 highlights
where these properties are listed in an input file. To suppress the fracture propagation
mechanism of Fric2D, and thus ensure that only the work minimization approach
implemented in GROW models fracture propagation, the user must set the mode-I fracture
toughness to high values (~1e10 MPa m1/2). The gravity flag determines whether the
model should include the forces produced by gravity. If gravity is turned on (with a value of
1) then the user must also create a topography file that describes the geometry of the
topography, which should list the nodes of the elements of the top boundaries of the model.
When the user calls GROW they must include the name of the topography file (that must
end in .topo) after the initial input values entered, i.e. after name of initial Fric2D input file,
resolution angle value, starting angle value and ending angle value. The kratio value
controls the ratio of horizontal to vertical normal stresses. This factor only significantly
influences results if the force due to topography/gravity is larger than the applied tractions
or displacements on the “tectonic” model boundaries.

17

Figure 6: Example Fric2D input file with bulk rock properties highlighted.

*Problem Variables

e ——

*Titles

titlel = "Simulation of the right-lateral releasing bend"”

title2 = "-4 km horizontal and 4 km vertical spacing in granite"

*Rock Properties

pr = 0.17 * (possion's ratio)

e = 5.00E+01 * (young's modulus MPa)

kic = 1.00E+10 * (mode I fracture toughness, MPa*m~1/2)
tensileStrength = 7 * (tensile strength of sample, MPa)
*Symmetry

ksym = 1

*Gravitational stresses

gravity = 0 * (apply gravity: O=no, 1=yes)
kratio = 1 * (ratio of horizontal:vertical gravitation stress)
density = 2550 * (density of rock kg/m”3)

18

3.2.2. Boundaries

In the BEM code Fric2D each boundary is discretized into elements, and the coordinates of
the end points of each boundary is listed by the user in the input file. In a Fric2D input file,
under the title Boundary Lines the user must list each linear segment of the boundary of the
model with a separate line (i.e., a line of text followed by a carriage return). Figure 7 shows
how the coordinates of the boundary lines must connect to complete a closed shape. The
segments of the boundaries must define a complete shape so that one node of the first
segment exactly intersects a node of the last segment listed in the input file. When the user
defines a solid surrounded by empty space the user must list in the segments in clockwise
order. For example, the second boundary line listed in the input file is in the clockwise
direction from the first boundary line listed. In this case one end point of the first boundary
line (titled xend and yend for the x- and y-coordinates in the input file header) intersects
the end point of the second boundary line (titled xbeg and ybeg). If the user wants to define
a void infinitely surrounded by solid material the boundaries must be listed in counter-
clockwise order. The user must set the number of boundary lines with the variable nblines,
which is listed under the title Number of Observation Lines and Boundary Lines in the Fric2D
input file before the Boundary Lines title.

For each boundary line, the user lists, in order, the number of elements in the
boundary (titled num), the x and y-coordinate of the one end point of the boundary (xbeg,
ybeg), the x and y-coordinate of the other end point of the boundary (xend, yend), a flag that
specifies the type of loading condition on this boundary (knode), and four numbers that
specify the magnitude and type of loading on the boundary (static bvs, static bvnh, monotonic
bvs, monotonic bvn). Static loading is applied constantly, while monotonic loading is applied
in a certain number of loading steps specified by the user (nsteps). Each of the
aforementioned values must be separated by white space (any number of spaces or tabs).
Figure 8 illustrates that Fric2D creates a solid surrounded by void space when the user lists
boundary segments in clockwise order, and creates a void surrounded by solid material
when the lists boundary lines in counterclockwise order.

The number of elements of a boundary must be a positive integer, and the
coordinates of the end points can be any real number (i.e., positive or negative and integer
or decimal). The length of each segment of a boundary (as determined by the distance
between the coordinates xbeg, ybeg and xend, yend) and number of elements (num) of that
boundary determines the length of elements of that boundary. Models with consistent (as
close to equal as possible) element lengths produce the most robust numerical results.

The flag that specifies the loading conditions (knode) must be 1, 2, 3, or 4. This flag
specifies whether tractions (MPa) or displacements (m) are applied to the elements of a
boundary (i.e., the boundary conditions of the model). Table 3 lists the specific boundary
condition for each knode value. If knode is 1, then the user must specify shear traction and
normal traction to the boundary; if the knode is 2, the user specifies shear displacement
and normal displacement; if the knode is 3, the user can specify shear displacement and
normal traction; and if the knode is 4, the user can specify shear traction and normal
displacement. However, because a model loaded with displacement boundary conditions
will optimize work with the lowest value of Wex/AA, and a model loaded with tractions is
most efficient when Wex/AA is greatest, the user should not mix the types of loading
conditions applied to the boundaries, and only use non-zero values of tractions or

19

displacements. The user may specify a knode that uses both tractions and displacements if
the magnitude of tractions is zero when the displacements are not zero, or the
displacements are non-zero and the tractions are set as zero. When the displacement of a
boundary is set to zero, then that boundary must remain fixed (in the normal or shear
sense) as that boundary experiences reaction tractions. When the tractions of a boundary is
set to zero, that boundary is free to displace, and can be thought of being on rollers.

The magnitude of static bvs and static bvn specifies the static loading on the
boundary, where static bvs represents shear traction (MPa) or shear displacement (m), and
static bvn represents normal traction (MPa) or normal displacement (m). Similarly, the
magnitude of monotonic bvs and monotonic bvn specifies the loading that is applied in a
certain number of steps, nsteps in the input file, on the boundary, where monotonic bvs
represents shear traction (MPa) or shear displacement (m), and monotonic bvn represents
normal traction (MPa) or normal displacement (m). The static loading remains constant
while the monotonic loads are applied. The number of steps in which the monotonic
loading is applied is specified under Option Commands in the input file with the variable
nsteps.

The sign of static bvs, static bvn, monotonic bvs and monotonic bvn (i.e., whether or
not the values are positive or negative) depends on the local coordinate system of the
elements of the boundary upon which the loads are applied. For example, bvs is positive if
1) Fric2D traverses the elements of the boundary clockwise (i.e., the user lists the segments
of the boundary in clockwise order) and 2) the direction of the shear displacement or
traction is clockwise, or to the right relative to the boundary. If 1) the user lists the
segments of the boundary clockwise, and 2) the direction of the shear displacement or
traction is counterclockwise, bvs is negative. Figure 9 demonstrates the sign convention of
the boundary conditions when the boundary segments are listed clockwise. If the user lists
the segments of the boundary clockwise and bvn is positive, the direction of the normal
displacement or traction is towards the outside of the model (i.e., the model boundary will
be moved relatively away from the center of the model). If the user lists the segments of the
boundary clockwise and bvn is negative, the direction of the normal displacement or
traction is towards the inside of the model (i.e., the model boundary will be moved
relatively toward the center of the model).

Table 3
Boundary condition specified by knode value.

knode | Shear (bvs) Normal (bvn)
1 traction traction
2 displacement | displacement
3 displacement | traction
4 traction displacement

20

Figure 7: Sketch illustrates that the ends of the boundary segments must connect so that the model boundary
is a closed polygon. The beginning coordinates of the first boundary line listed must equal the coordinates of
the end of the last boundary line listed, and the end coordinates of each boundary line (except the first
boundary listed) must equal the coordinates of the beginning of the next boundary line listed. Because these
boundary segments are listed in clockwise order, Fric2D interprets this shape as a solid surrounded by void
space. The colored numbers show the coordinates of the end points of the boundary lines. The black numbers
indicate the number of elements of the corresponding boundary line. The value and sign convention of the
loading conditions (i.e., knode, static bvs, static bvn, monotonic bvs, monotonic bvn) are discussed more in the

text and Figure 9.

* (bvs = shear; bvn = normal) STATIC MONOTONIC
*num xbeg ybeg xend yvend knode bvs bvn bvs bvn
| Jrp—— [p—— [— p—— i —— A ——
29 0 0 0 14500 2 0 0 0 0
21 0 14500 0 25000 2 0 0 0 -4000
100 0 25000 50000 25000 2 0 0 4000 0
29 50000 25000 50000 10500 2 0 0 0 4000
21 50000 10500 50000 0 2 0 0 0 0
100 50000 0 0 0 2 0 0 0 0
100
0, 25000 50000, 25000
21
29
¢ 0, 14500
50000, 10500 ¢
29
21
0,0 50000, 0
[L]
100

21

Figure 8: Sketch illustrates that Fric2D creates a solid surrounded by void space when the user lists
boundary segments in clockwise order (A), and creates a void surrounded by solid material when the lists
boundary lines in counterclockwise order (B). In A) Fric2D traverses the elements of the boundary clockwise;
in B) Fric2D traverses the element counterclockwise. The red arrows and numbers indicate the direction that
the elements are traversed, and the order in which the boundaries were listed in the input file. The gray
region indicates volume that is solid, white region indicates void space.

A)

22

Figure 9: Sketch illustrates sign convention of boundary conditions used in Fric2D model. The red arrows
indicate the direction that Fric2D traverses the elements of the boundaries. These arrows run clockwise
because the user listed the segments of the boundary in clockwise order, in the order indicated by the
numbers on the inside of the model. The end points of each segment are designated by black dots. Bvn and bvs
are zero on boundary segments 1, 5 and 6 because these boundaries are fixed and experience no shear or
normal displacement. If the loading conditions were tractions and bvn = bvs = 0 then the boundaries are said
to be on “rollers”, because under those conditions they must experience no tractions, and thus no resistance
to displacement. On boundary 2, bvn < 0 because the boundary is displaced toward the inside of the model
and on boundary 4, bvn > 0 because the boundary is displaced toward the outside of the model. These
conventions hold because we defined the local element coordinate system in the clockwise direction. For
boundary 3, bvs > 0 because the model must be displaced in the same direction as the elements of the
boundary are traversed (clockwise, or to the right on this boundary). Similarly, if we wanted to apply a left
lateral displacement to boundary 6 then bvs > 0, because the displacement is also in the same direction that
Fric2D traverses the elements of the boundary (clockwise, and to the left on this boundary). These boundary
conditions correspond to the conditions listed in the input file shown in Figure 7.

bvs >0
bvn =0
¢ — N _ _ _ 9
-> 3 -
bvn <0
brs=0)2 4|— bvn>0
- _)bvs=0
1 3
bvn =0 /
bvs =0 /1 5\ bvn =0
bvs=0
N\
/ 6
¢ 7 7 7 7 7 7 ¢
bvn=0
bvs =0

23

3.2.3. Fault Properties

To define a fault in a Fric2D input file the user must enter at least two input lines after the
Fault Conditions header in the input file. The first input line must begin with the text “fault”,
after this flag the user lists the name of the fault, which can be any sequence of
alphanumeric characters and does not include any white space, a flag that specifies if
cracks can propagate from the middle of the fault, labelled grow_tails?, a flag that
determines if the fault is growing from one tip of a fault, from_end1?, and a flag that
determines if the fault is growing from the other tip of the fault, from_endZ2?. The value of
these flags is set as “yes” or “no” in the input file. When using GROW, the user should set the
grow_tails? flag to “no.” After this line the fault is described by a line that contains, in order,
the number of elements in the fault, titled as num in the input file, the x-coordinate of one
tip of the fault, xbeg, the y-coordinate of that tip, ybeg, the x-coordinate of the other tip of
the fault, xend, the y-coordinate of this tip, yend, shear stiffness, stiffS, normal stiffness,
stiffN, tensile strength, ten-str, initial cohesion, init-coh, the sliding cohesion, slid-coh,
coefficient of static friction, stat-fric, coefficient of dynamic friction, dy-fric, and the critical
slip-weakening distance, crit-slip. If the user decides to grow from the xbeg, ybeg
coordinates they must set the from_end1? flag to “yes”. If the user wants to grow from the
xend, yend fault tip they must set from_endZ2? to “yes”. The user can set both of these flags to
“yes” and grow from both tips as well.

The number of elements must be a positive integer and the coordinates of the end
points specify locations in the model where the unit of distance is meters. The number of
elements and length of each fault will determine the element length of that fault. The most
robust numerical models have consistent element sizes. The initial coordinates of the faults
must either be 2 element lengths from any model boundaries, or the end points of the fault
must exactly intersect an element node of the boundary. When the tip of the fault exactly
intersects a boundary, the user should not specify that that fault tip is growing. The shear
and normal stiffness, tensile strength, and initial and sliding cohesion are defined in MPa.
The unit of the critical slip-weakening distance is meters.

The shear stiffness controls the resistance to shear displacement on an element.
This influence of shear stiffness can also be modeled by changing the values of friction of
the fault. Normal stiffness controls the degree to which elements may interpenetrate: if
normal stiffness is high then elements may not interpenetrate, if it is low then the positive
and negative sides of the element are allowed to interpenetrate, and the modeled system is
effectively more compliant (reduced Young’'s modulus). Fric2D enables slip-weakening to
be modeled with the static and dynamic coefficient of friction and the prescribed slip-
weakening distance. When shear slip on an element exceeds this slip-weakening distance
the coefficient of friction on the fracture evolves linearly from its static to dynamic value.
Thus the dynamic value should be less than the static value if the modeled material is slip-
weakening. Figure 10 shows the evolution of 3 input file that describes one fault, and
highlights the specific location and formatting of each parameter mentioned above. This
example also shows the Crack functionality of GROW; see the following section “Crack
Properties” to learn more about this implementation. Table 4 synthesizes the various fault
properties listed in this input file and lists the title of the property used in the input file.

The user can list multiple faults by separating the lines describing each individual
fault with carriage returns (enter keys). The user can define a fault with segments with

24

differing properties by listing multiple lines after the original input line that begins with the
“fault” header. Similar to the requirements of the coordinates of the boundary lines, the end
points of the segments of the fault must connect so that the structure is continuous.

Figure 10: Example of fault location and properties listed in 3 Fric2D input files. The initial input file is
shown at the top of the figure, and input files produced in subsequent iterations of growth are shown in
descending order. Input files show evolution of fracture properties enabled by *Crack properties. Red boxes
highlight elements with intact rock properties (*Crack) and blue boxes show elements with fracture
properties. Table 4 and Table 5 lists the other properties listed in this input file.

*

*Fault Conditions
*

*fault name grow_tails? from endl? from end2?

*num xbeg vbeg xend yend stiffs stiffN ten-str init-coh slid-coh stat-fric dy-fric crit-slip
Hmmmm e —_— — S — _— R —

fault left no no yes

*tag KS KN ten-str shear-str coh int-fric dy-fric crit-slip

68 10000 13500 27000 13500

fault right no yes no
*tag XS KN ten-str shear-str coh int-fric dy-fric crit-slip

68 23000 11500 40000 11500

*

*Fault Conditions
*

*fault name grow_tails? from endl? from end2?

*num xbeg ybeg xend yend Stiffs STiffN ten-str init-coh slid-coh stat-fric dy-fric crit-slip
LS — J— O

fault left no no yes

*tag XS KN ten-str shear-str coh int-fric dy-fric crit-slip

*Crack 1.00E+10 1.00E+10 7 14] 0.5 0.5 0

68 10000 13500 27000 13500

1 27000 13500 27249.04867452 13521.78893569

1 27249.04867452 13521.78893569 27490.53013109 13586.49369697

fault right no yes no

*tag KS KN ten-str shear-str coh int-fric dy-fric crit-slip
*Crack 1.00E+10 1.00E+10 7 14] 0.5 0.5 0

1 22500.00000000 11500.00000000 22750.00000000 11500.00000000

1 22750.00000000 11500.00000000 23000 11500

68 23000 11500 40000 11500

*Fault Conditions

*fault name grow_tails? from endl? from end2?

*num xbeg ybeg xend yend Stiffs StiffN ten-str init-coh slid-coh stat-fric dy-fric crit-slip
Wmme mmem ——— —_—— e e mmmme e

fault left no no yes

*tag KS KN ten-str shear-str coh int-fric dy-fric crit-slip

*Crack 1.00E+10 1.00E+10 7 14 0 0.5 0.5

0
68 10000 13500 27000 13500
1 27000 13500 27241.48145657 13564.70476128
1 27241.48145657 13564.70476128 27476.40461176 13650.20979712
1 27476.40461176 13650.20979712 27681.19262282 13793.60390621

fault right no yes no
*tag XS KN ten-str shear-str coh int-fric dy-fric crit-slip
*Crack 1.00E+10 1.00E+10 7 14 1] 0.5 0.5

[}
1 22266.97949577 11370.91709279 22501.90265096 11456.42212862
1 22501.90265096 11456.42212862 22750.95132548 11478.21106431
1 22750.95132548 11478.21106431 23000 11500
68 23000 1 1500 40000 11500

25

Table 4: Table lists flags and coordinates designated in a Fric2D input file. Table 5 shows additional fault and

intact rock properties specified in the example input file shown in Figure 10.

Title Property

fault Tag used in input file for parsing

grow_tails? Flag to indicate if cracks can propagate from interior nodes of elements of a fault. Set
as “no” if using GROW.

from end1? If fault propagating from end 1 (i.e., the beginning of the fault, xbeg, ybeg)

from_endz? If fault propagating from end 2 (i.e., the end of the fault, xend, yend)

num_ Number of elements in a fault segment

xbeg x-coordinate of end 1 (beginning) of initial fault (m)

ybeg y-coordinate of end 1 (beginning) of initial fault (m)

xend x-coordinate of end 2 (end) of initial fault (m)

yend y-coordinate of end 2 (end) of initial fault (m)

*Crack Flag used in input file for parsing to indicate the properties of the newly added

elements

Table 5: Table lists the value of the property listed in the input file shown in Figure 10, and indicates whether
the property is a property of the fracture or the potential element/fracture tip, which should reflect
properties of intact rock.

Property Title Value
Intact rock Poisson’s ratio | pr 0.17
*Crack Young’s modulus | E 50 GPa
shear stiffness | KS 1e10 MPa
normal stiffness | KN 1e10 MPa
tensile strength | ten-str 7 MPa
inherent shear strength | shear-str | 14 MPa
cohesion | coh 0
internal coefficient of friction | int-fric 0.5
dynamic coefficient of friction | dy-fric 0.5
critical slip-weakening distance | crit_slip 0
Fault shear stiffness | stiffS 1e10 MPa
fault normal stiffness | stiffN 1e10 MPa
tensile strength | ten-str 0 MPa
initial cohesion | init-coh 0 MPa
sliding cohesion | slid-coh 0 MPa
static friction | stat-fric 0.3
dynamic friction | dy-fric 0.3
slip-weakening distance | crit-slip Om

26

3.2.4. Crack Properties

[f the user wishes to model fault growth where the tip of a growing fault has different
characteristics than the remainder of the fault, the user can set the Crack properties of a
specific fault. To set these properties, the user must insert an additional input line after the
input line listing the name of the fault (that begins with “fault”) and before the input line
listing the fault characteristics, which begins with the number of elements in the fault. This
line must begin with the header “*Crack”. After this header the user must list the same
number of properties they include in the input line that lists the fault properties of the
original fault. Figure 10 shows the exact location and formatting required for using Crack
properties. If the user invokes this functionality each potential element added to the tip of
the growing fault will initially have the properties listed in the “*Crack” line. After GROW
determines what orientation optimizes work and the new element is added to the model, in
the next propagation of crack growth the element with Crack properties will then attain the
properties of the remainder of the fault. Thus if one tip of one fault is growing, only one
element in the model will have Crack properties during one propagation of crack growth.
Figure 11 demonstrates how the properties along each element of a fault evolve when the
user invokes the Crack functionality. Table 5 lists of the properties and values of each fault
property in the example input file illustrated in Figure 11. This functionality allows the user
to simulate the propagation of faults through intact rock because the user can set the Crack
properties to intact rock values (i.e., inherent shear strength, coefficient of internal
friction), and can set the fault properties to values representative of crustal faults (i.e.,
cohesion, coefficient of static/dynamic friction).

Figure 11: [llustration demonstrates how the user can set different fault properties for potential elements.
Black elements are elements of the fault, and red elements are potential elements. The values of the
properties of the fault and potential elements are listed in Table 5. 1) shows the initial fault geometry, 2)
shows that the elements tested in the first propagation of crack growth in both the first pass and tuning
sequence will contain the fault properties specified for newly added elements, and 3) shows that the element
that optimized AW.x/AA in the first propagation of crack growth will attain properties of the through-going
fault in the next propagation of crack growth. In 2) and 3) the element that optimized work is bolded and
colored red.

P————— ——
1) Initial fault geometry

2) Propagation 1

@ @ @

3) Propagation 2

27

3.2.6. Flaw Properties

When the user chooses to propagate from a point, they specify a location of a point from
which a fault will propagate in the initial Fric2D input file. To define the location and
additional properties of this point the user must include a line in the input file after the
“*Fault Conditions” header that is separated by the other fault input lines by at least one
carriage return. This input line begins with “*Flaw-Intact”, and after this header the line
should list in order the name of the fault, labelled as fault in the input file, the x-coordinate
where the point is located, xcoor, the y-coordinate of the point, ycoor, the length of the
elements of this fault (m), length, a flag that determines how the fault is growing (“yes” or
“no”), grow_both?, shear stiffness (MPa), stiffS, normal stiffness (MPa), stiffN, inherent shear
strength (MPa), strength, static friction, friction-s, dynamic friction, friction-d, and slip-
weakening distance (m), L. The aforementioned fracture properties should represent the
intact rock properties of the material because the cracks tested in the first propagation of
growth at the coordinates specified simulates fracture initiation, and the failure of intact
rock.

The user may also allow the fracture properties to evolve with growth, similar to the
*Crack properties mentioned above. To indicate that the properties of the fracture should
change with growth, the user must add an input line immediately before the line that
begins with “*Flaw-Intact”. This line must start with “*Flaw-Fault”, and should include
fracture properties that simulate weakened slip surfaces (i.e., cohesion, coefficient of static
and dynamic friction). Figure 12 shows the exact formatting and location of these input
lines.

4. Qutput

In a GROW run several files are generated and preserved throughout the length of the run,
and maintained after GROW terminates. Some files maintain the initial contents written to
the given file, and other files are repeatedly overwritten in various propagations of crack
growth.

4.1. Files Generated

After GROW reads in the initial Fric2D input file provided by the user, which must exist in
the same directory as the GROW executable, GROW copies the contents of this Fric2D input
file to several files with differing names. Later in a GROW execution the contents of these
files are overwritten to represent other fault geometries, which are expressed in Fric2D
input files. Table 6 describes some of the files generated in a GROW run. In addition to the
files listed in Table 6, GROW also automatically creates files to identify the most efficient
fault geometry in a given propagation of crack growth. For example, if the user calls GROW
with the input file input.in, a resolution angle of 45°, a minimum angle of 90°, and a
maximum angle of 270°; and the Fric2D input file input.in contains one fault named
banning that is growing from end 2, then Table 7 lists all of the Fric2D input files generated
in the first propagation of crack growth for which Wey will be calculated, and subsequently
used to identify the most efficient orientation of the element added to end 2 of banning. In
this example the most efficient orientation of the newly added element to banning is

28

oriented 180° from end 2 of the fault. For each of the input files listed in Table 7, a new
Fric2D output file is produced after GROW calls Fric2D for the input file. If two faults are
growing in input.in, and the faults are named banning and coachella, then the input file
input_1_coachella_1_45.in contains the fault geometry after the most efficient element
oriented radially from the fault banning is added to the geometry, and a new element
oriented 45° clockwise from end 1 of coachella has been added. The fault banning grows
first—that is, new elements are added to banning before coachella because faults propagate
in alphabetic order in GROW. Figure 2 also lists the specific filename and illustrates the
fault geometry for each geometry tested in the first propagation of crack growth.

Figure 12: Images of 3 Fric2D input files that shows evolution of fault properties when user choses to initiate
a fracture from a point. Blue boxes highlight fault properties prescribed by the user with the *Flaw-Fault
input line, and red boxes show intact rock properties prescribed with the *Flaw-Intact input line. The table
below lists the values of the fault properties for the fault back.

*Tag stiffS stiffN cohes fric-s fric-d L

*Flaw-Fault lel0 lel0 0 0.62 0.58 0.00025

*Tag fault xcoor ycoor length grow_both? sStiffS stiffN shear-str fric-s fric-d L
*Flaw-Intact backthrust 0.055424 0.01173379 0.002 yes lel0 lel0 100 0.96 0.72 0.00025
*Tag stiffS stiffN cohes fric-s fric-d L

*Flaw-Fault lel0 lel0 0 0.62 0.58 0.00025

*Tag faulc xcoor ycoor length grow_both? sStiffS sctiffN shear-str fric-s fric-d L
*Flaw-Intact backthrust 0.055424 0.01173379 0.002 yes lel0 lel0 100 0.96 0.72 0.00025
1 0.055424 0.01173379 0.05610804 0.01361318 iel0 lel0 100 0.96 0.72 0.00025

*Tag stiffS stiffN cohes fric-s fric-d L

*Flaw-Fault lel0 lel0 0 0.62 0.58 0.00025

*Tag fault Xcoor ycoor length grow_both? stiffS stiffN shear-str fric-s fric-d L
*Flaw-Intact backthrust 0.055424 0.01173379 0.002 yes lel0 lel0 100 0.96 0.72 0.00025

fault backthrust no yes yes

*Crack 1lel0 lel0 100 0.96 0.72 0.00025

1 0.05473996 0.00985440 0.055424 0.01173379 Plel0 lel0 100 0.96 0.72 0.00025
1 0.055424 0.01173379 0.05610804 0.01361318 [21el0 lel0 0 0.62 0.58 0.00025

29

Table 6: Table lists files generated in a GROW run.

Filename

Description

input.in

Initial input filename provided by user. Formatted as a Fric2D input
file. Must exist in current directory that from which the GROW
executable is running. Must end in “.in”. The user creates this file.

input.eff

Fric2D input file that represents the most efficient geometry identified
in the current propagation of crack growth. GROW overwrites the
contents of this file when a more efficient fault geometry is found at
the end of a propagation of crack growth.

input.prev

Fric2D input file that represents the most efficient geometry found
after the last new, most efficient element was added to a fault. GROW
overwrites this file every time a new element is identified as the most
efficient orientation of an element added to the tip of one fault.

This file is used to generate the fault geometries that are tested for
efficiency in the first general search of a propagation of crack growth.

input.prev_seq

Fric2D input file that preserves the most efficient geometry found in
the previous propagation of crack growth, before any new elements
are added to any of the growing fault tips. Used in tuning search of
efficient orientations.

input.raw

GROW output file that records the exact geometry tested in each
propagation of crack growth, the Wey, Wext/AA and change in Wey/AA
(AWext/AA) produced by each geometry, if a fault stops propagating,
intersects another fault or a boundary, and other information related
to this GROW execution.

input_contN.in

Fric2D input file that records the most efficient fault geometry found in
the last propagation of crack growth before GROW automatically
restarts the run. N is 1 when GROW terminates and restarts itself after
5 propagations of crack growth. Fric2D generates this file and adopts
this naming convention for all subsequent files created in the new
GROW run (i.e., input_contN.eff, input_contN.prev, etc.). After 5 more
propagations of crack growth, which began with the input file
input_contl.in, if faults are still growing, GROW starts the process
again with the input file input_cont2.in.

30

Table 7: Table describes all the Fric2D input files used to represent the various fault
geometries in the first propagation of crack growth when the user calls GROW with the
input file input.in, a resolution angle of 45°, a minimum angle of 90°, and a maximum angle
of 270°; and the Fric2D input file input.in contains one fault named banning that is growing

from end 2.

Filename

Description

input_1_banning_2_45.in

Fric2D input filename that describes the fault geometry
of the initial input file input.in, with one element added
to end 2 of the fault banning that is oriented 45°
clockwise from end 2 of this fault. The “1” indicates that
the geometry is being tested in the first propagation of
crack growth. The text “banning” indicates what fault
the new element has been added to. The “2” indicates
that the new element has been added to end 2 of the
fault banning. And “45” represents the orientation of
the newly added element.

input_1_banning_2_90.in

Same as above, except the element is oriented 90°
clockwise from end 2 of banning.

input_1_banning_2_135.in

Same as above, except the element is oriented 135°
clockwise from end 2 of banning.

input_1_banning_2_180.in

Same as above, except the element is oriented 180°
clockwise from end 2 of banning.

input_1_banning_2_225.in

Same as above, except the element is oriented 225°
clockwise from end 2 of banning.

input_1_banning_2_270.in

Same as above, except the element is oriented 270°
clockwise from end 2 of banning.

input_tune_1_banning 2_157.5.in

First fault geometry tested in the tuning sequence of the
first propagation of crack growth if the input file
input_1_banning_2_180.in describes the most efficient
fault geometry found in the first propagation of crack
growth. In other words, an element added at 180°
clockwise from end 2 of the fault banning optimizes
AWy /AA in the first propagation of crack growth, or
Bopt = 180°. This fault geometry is identical to the initial
input file provided by the user, but also contains one
new element added to end 2 of fault banning at 157.5°

(eopt —eres/z) .

input_tune_1_banning 2_202.5.in

Second fault geometry tested in the tuning sequence
with the same parameters described in the caption
above. Here, the fault geometry is identical to the initial
input file provided by the user, but also contains one
new element added to end 2 of fault banning at 202.5°
(eopt +6res/2)-

31

4.2. Standard Output

GROW also produces print statements in the terminal window so the user can continually
monitor the progress of a given GROW execution. These print statements include the fault
geometry that is currently being tested for efficiency (i.e., the geometry for which Fric2D is
calculating tractions and/or displacements along every element in the model), the external
work required by each previously tested geometry, and other pertinent information. Figure
13 shows an example of standard output produced by GROW.

5. System Requirements
5.1 Files Required

To execute GROW the following files must exist within the same directory: the GROW
executable GROW.pl, a perl script Wext.pl, the Fric2D executable fric2d, and the Fric2D
input file that represents the initial geometry and boundary conditions of the system. See
the Input section for more details about this input file and using GROW via the command
line.

5.2 Compilers Required
Because GROW is written in Perl and calls Fric2D, which is a C executable, you must have a

C and Perl compiler. This website describes more fully how to install and compile Fric2D
from source code: http: //www.geo.umass.edu/faculty/cooke/Fric2D /chapterl.html#sub4.

32

Figure 13: Examples of standard output produced by GROW. The green rectangles highlight print statements
produced by Fric2D, and the fracture geometry being tested and shear and normal displacements (DS, DN)
and shear and normal tractions (Sigma-S, Sigma-N) calculated by Fric2D on the element added at the given
orientation from the end of the propagating fault. The red rectangle shows the AW.,/AA calculated for
different orientations of an element added at end 2 of the fault RCouter. The orange rectangle shows the Wex:
and AWy /AA for each increment of growth. In this example A Wex/AA is negative because the example uses
displacement boundary conditions, which causes Wex to decrease. The darker blue rectangle shows that some
of the elements added to the end of this fault did not fail in tensile or shear failure, and than GROW does not
consider these geometries when searching for the geometry that optimizes work. The light blue rectangle
highlights the print statements produced when GROW automatically restarts itself after 5 propagations of
growth. The yellow boxes highlight print statements that show the most efficient geometry found in this
increment of growth. A) shows this geometry before the higher resolution tuning sequence is entered, and B)
shows this geometry after the final tuning sequence.

ES Some 3 S N

3. W0n- 00 R 3 W

B)

33

References

Cooke, M.L. and E. H. Madden (2014), Is the Earth Lazy? A review of work minimization in
fault evolution, Journal of Structural Geology, 66, 334-346, doi:
http://dx.doi.org/10.1016/j.jsg.2014.05.004.

Cooke, M. L., and D.D. Pollard, 1997. Bedding plane slip in initial stages of fault-
related folding. Journal of Structural Geology, 19, pp. 567-581.

34

